Gas Recovery Solutions

"Aurora Eco-System" Technology

To Prevent Methane Emissions from

Pneumatic Well Site Equipment

&

To Monetize Recovered Natural Gas

www.gasrecoverysolutions.com

Market Need: What Oil & Gas Industry Challenges Do We Solve?

- » Today, raw produced gas (un-combusted) is often used to drive pneumatic equipment at well sites, such as glycol pumps, controllers, valves, switches and plunger lifts—a.k.a. "instrument air"
 - Especially in cold climates—Marcellus/Utica; Rockies; Williston; Midcontinent and Canadian basins
 - Any well site using these devices will vent or flare the same amount of gas—regardless of the amount produced
- » This is now under threat from new, stricter government regulations to reduce "fugitive" methane emissions—BLM, EPA, States and Canadian regulators
 - Use of produced gas as "instrument air" means that methane must be vented or flared
 - Many producers are not aware of this methane emissions source
 - Potentially significant fines or other regulatory consequences
- » That produced gas cannot be sold to market 🔿 Lost Revenues
 - ~ 50 MCF/day per well for instrument air = ~ \$35,000/year of lost revenue per well @ \$2/MCF
 - ~ \$350,000/year for a 10-well pad—regardless of the amount of gas produced
 - Producers often greatly underestimate (by up to **10 X**) the amount of gas used to drive their pneumatic devices
- » VOCs are also often produced when using gas as instrument air—formaldehyde from glycol + flaring
- » Untreated, "wet" gas corrodes equipment and freezes lines is **Equipment failure + repair costs**
 - Can also cause valves and seals to degrade is Exacerbates methane emissions

Our Solution: "Aurora Eco-System" for Instrument Air at Well Sites

- » Aurora Eco-Systems provide clean, dry compressed air instead of using gas to drive pneumatic devices
 - Reduces or eliminates methane emissions at oil & gas wells (wet or dry gas)—avoids venting & flaring
 - Producers to sell & monetize gas that would otherwise be consumed as instrument air—"found revenues"
 - Avoids potential fines and other regulatory consequences
- » Requires **no changes** to current well site operating procedures
- » Commercially proven—60+ units deployed for large E&P cos.
 - USA, Canada & South America
 - In some of the world's hottest & coldest climates
- » Scalable, mobile and re-deployable
- » Installation, training + O&M services provided (optional)
- » Large Aurora units can serve 3-15 wells per unit (multi-well pads)
- » Small Aurora units can serve 1 well each
- » Payback periods 1-2 years—from recovered gas sold to market
 - Not including avoided fines of up to \$500/day per well (BLM))

Aurora Eco-System Description—Patents Pending

- » Does not require any changes to current well site operating procedures
- » Compression system powered by an emissions-free solar and/or wind power generation system plus a battery pack for power storage—entirely off the grid
 - 24/7 operation
- » Remotely monitored via satellite/cellular networks
- » Entire system is contained in one shipping container—installed in one day
 - No special hook-ups/infrastructure required
 - Uses existing piping & tubing
- » Mobile & scalable
- » No power grid connection required
- » No permits required
- » Quad-0 compliant (EPA)
- » Comprehensive warranty

Aurora Eco-System – Methane Emissions Solution

Summary: Aurora Eco-System Benefits

<u>Economic</u>

- » Improve net gas production and increase revenues by avoiding onsite consumption of gas
- » Reduce CAPEX by avoiding premature equipment failure from exposure to corrosive "wet" gas
- » Reduce OPEX (labor costs & downtime) associated w/ checking for leaks; repairs; replacements

Environmental

- » Reduce methane emissions by reducing or eliminating methane venting, flaring and leaking
- » Reduce VOC production & emissions from well site equipment
- » Reduce NOx emissions by reducing or eliminating flaring

Operations & Reliability

- » Improve reliability of equipment. Avoid premature failure from exposure to corrosive wet gas.
- » Avoid freezing of equipment & lines from the use of wet gas (prone to freezing)
- » Prevent additional methane emissions from corroded valves & seals

<u>Safety</u>

» Eliminating use of flammable natural gas as instrument air improves well site safety overall

GRS's Financing & Revenue Sharing Program—"No Money Down"

Producers: You can purchase Aurora units from us <u>OR</u> partner with us

Background & Purpose

- » Capital budgets are currently constrained for many E&P companies
- » But the need to comply with new methane regulations + capture lost revenues is urgent
- » GRS has developed a **"no money down" financing & revenue sharing program** to allow Aurora units to be deployed for E&P cos. **without requiring a purchase or CAPEX**

Program Overview

- » GRS and its capital partners provide **100% of financing** to deploy Aurora units
- » **GRS and the well owner/operator share revenues** from the sale of natural gas that would otherwise be consumed onsite as instrument air
- » Instrument air usage is measured in accordance with AGA standards & practices
- » Operating charges & accounting protocols in accordance with **Oil & Gas industry norms**

Sample Test Results: Aurora Eco-Systems at Green River Basin (WY) Gas Wells

Well Info	Standard												
Elevation: Temperature: Number of Wells:	6,770 32 3	feet °F		NG (scfin)	Flow (scfd)	NG Saving (\$/day)	85% (Ibs/day)	Methane 90% (lbs/day)	9596	096	596	& Butane 10% (lbs/day)	CO2 Flared (Ibs/day)
Gage Pressure: Actual Gas Flow: Natural Gas Weight:	14.8) psi 6 cfm 8 pcf (at 60 °F)	Total Per Well	118.7	170,920 56,973	\$513.32 \$171.11	6363 2,121	6,738 2,246	7,112 2,371	0	374 125	749 250	21,946
CO ₂ (Flared NG): NG Cost: Natural Gas Cost: Act.Atm. Pressure:	128.4 \$2.93 \$3.00 11.44	lbs/Mcf per MMBtu per Mcf psi	Natel. This model is for demonstration purposes only Nate 2: All embeddees data and calculations were obtained from the EPA/EDA website Nate 2: Main gas compaction may vary domastic allyclate used is mole calculations were "typical compactions") Nate 4: Our compaction accept on incidity for the contests of this model, or the compactors of any actions taken on the basis of the information provided.										
Std. Atm. Pressure:		psi (at 60 °F)		an another a	WE) for the country	of the model, or the comm	dearers at solver	ana Galeri ni Ber y	and of the adversar	an protos			

Well Info	Standard												
Elevation: Temperature:	7,000	feet °F		NG Flow		NG Saving	Methane 85% 90%		9596	Ethane, Propane, 0% 5%		& Butane 10%	CO ₂ Flared
Number of Wells:	3			(scfin)	(scfd)	(\$/day)	(lbs/day)	(lbs/day)	(lbs/day)	(lbs/day)	(Ibs/day)	(lbs/day)	(Ibs/day)
Gage Pressure:	100	psi	Total	75.5	108,695	\$291.90	4047	4,285	4,523	0	238	476	13,956
Actual Gas Flow:	9.861	cfin	Per Well	25.2	36,232	\$97.30	1,349	1,428	1,508	0	79	159	4,652
Natural Gas Weight:	0.0438	pcf (at 60 °F)	Natel. The model is for dominantial in purposes only Nate 2.16 contained data and calculation from the EPA/EIA weights										
CO ₂ (Flared NG):		lbs/Mcf											
NG Cost:	\$2.62	per MMBtu											
Natural Gas Cost:		per Mcf	Nate J.Mark gas in	Note 3: Main gas comparison may vary downatically/data and in mole calculations were "(ypical comparison")									
Act.Atm. Pressure:	11.34	psi	Note 4: Our companies accept on its Milly for the content of this model, or the comequences of any actions taken on the lasts of the indexnation provided.										
Std. Atm. Pressure:	14.696	psi (at 60 °F)											
		S. 27											

Gas well owners routinely underestimate the amount of gas consumed as instrument air. 35-60 Mcfd is typical in the offen 10% or more of a well's produced gas.

Aurora Eco-System – Methane Emissions Solution

7

Reduce methane emissions while increasing gas revenues!

Contact Information

To purchase Aurora Eco-Systems for your well sites or to discuss GRS's 100% financing & revenue sharing program, please contact us at:

info@gasrecoverysolutions.com

Jeremy Dockter, CEO Tel.: 917-653-5418 Email: jdockter@gasrecoverysolutions.com

Alex Eucare, COO Tel.: 301-651-0690 Email: aeucare@gasrecoverysolutions.com

Aurora Eco-System – Methane Emissions Solution

8